Robust Centroid Quantile Based ClassiÞcation for High Dimension Low Sample Size Data

نویسندگان

  • Jiancheng Jiang
  • J. S. Marron
چکیده

A new method of statistical classiÞcation (discrimination) is proposed. The method is most effective for high dimension low sample size data. Its value is demonstrated through a new type of asymptotic analysis, and via a simulation study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Quantile Regression in Sparse High-dimensional Models

This paper studies high-dimensional parametric quantile regression models, where the dimension of the model increases with the sample size. we focus on the highdimensional low sample size (HDLSS) setting where the number of covariates is allowed to be larger than the sample size. The underlying assumption of the model that allows for a meaningful estimation is the sparseness of the true model. ...

متن کامل

Regularized Quantile Regression and Robust Feature Screening for Single Index Models.

We propose both a penalized quantile regression and an independence screening procedure to identify important covariates and to exclude unimportant ones for a general class of ultrahigh dimensional single-index models, in which the conditional distribution of the response depends on the covariates via a single-index structure. We observe that the linear quantile regression yields a consistent e...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Cluster-robust Bootstrap Inference in Quantile Regression Models

In this paper I develop a wild bootstrap procedure for cluster-robust inference in linear quantile regression models. I show that the bootstrap leads to asymptotically valid inference on the entire quantile regression process in a setting with a large number of small, heterogeneous clusters and provides consistent estimates of the asymptotic covariance function of that process. The proposed boo...

متن کامل

Robust Portfolio Optimization

We propose a robust portfolio optimization approach based on quantile statistics. The proposed method is robust to extreme events in asset returns, and accommodates large portfolios under limited historical data. Specifically, we show that the risk of the estimated portfolio converges to the oracle optimal risk with parametric rate under weakly dependent asset returns. The theory does not rely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003